伊人久久大香线蕉综合网站-色婷婷欧美在线播放内射-免费视频国产在线观看-国产熟妇另类久久久久婷婷-亚洲成a人片在线视频

技術文章您現在的位置:首頁 > 技術文章 > ClickChemistry點擊化學疊氮試劑Azide Plus and Picolyl Azide Reagents

ClickChemistry點擊化學疊氮試劑Azide Plus and Picolyl Azide Reagents

更新時間:2023-04-22   點擊次數:1423次

Azide Plus and Picolyl Azide 試劑

Kinetic comparison of conventional azide
(Figure 1). Kinetic comparison of chelating azide and non-chelating conventional azide.

Recent advances in the design of copper-chelating ligands, such as THPTA or BTTAA that stabilize the Cu(I) oxidation state in aqueous solution, improve the kinetics of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction and greatly increase the sensitivity of alkyne detection. Copper-chelating ligands have also been shown to increase the biocompatibility of the CuAAC reaction by preventing the copper ions from causing biological damage1. The next step in improving the CuAAC reaction was the development of copper-chelating azides as more reactive substrates. Since it is speculated that the Cu(I)-azide association is the rate-determining step in the CuAAC catalytic cycle2, the introduction of a copper-chelating moiety at the azide reporter molecule allows for a dramatic raise of the effective Cu(I) concentration at the reaction site, enhancing the weakest link in the reaction rate acceleration(Figure 2). It has been proposed that the high reactivity of chelating azides comes from the rapid copper-azido group interaction which occurs prior to Cu(I) acetylide formation, and this renders the deprotonation of alkyne in the rate-determining step3. This concept was successfully exploited to perform CuAAC reactions using pyridine-based copper-chelating azides (picolyl azides) as substrates4-6. Nevertheless, the copper-chelating motif of picolyl azide molecules is not complete, requiring the presence of a copper chelator (e.g. THPTA) to achieve significant improvement in the kinetics of the CuAAC reaction3, 4.

In efforts to improve the performance of the CuAAC reaction in complex media, Click Chemistry Tools developed new chelating azides with a complete copper-chelating system in their structure, termed “Azides Plus"(Figure 3). These azides are capable of forming strong, active copper complexes and are therefore considered both reactant and catalyst in the CuAAC reaction. Using these types of azides, the CuAAC reaction becomes a bimolecular reaction and displays much faster kinetics compared to the CuAAC reaction performed with conventional azides.

Comparative kinetic measurements for the CuAAC reaction(Figure 4)were performed using an agarose-alkyne resin labeling experiment (3.0 uM CuSO4, with (6.0 uM) or without THPTA ligand) using Cy5 Azide Plus, Cy5 Picolyl Azide, and Cy5 bis-Triazole Azide – the fastest copper-chelating azide that has been reported to date7. As expected, the picolyl azide containing the incomplete copper-chelating motif displays relatively slow reactivity, in particular without the presence of THPTA. The kinetic data shows that completing a copper-chelating moiety greatly enhances reactivity, and importantly does not require the presence of copper-chelating ligands. Interestingly, the copper-chelating azides developed by Click Chemistry Tools display almost identical reactivity in the CuAAC reaction compared to the most reactive copper-chelating azide reported up to now7, bis-triazole azide.

The new copper chelating azides allow the formation of azide copper complexes that react almost instantaneously with alkynes under diluted conditions. This unprecedented reactivity in the CuAAC reaction is of special value for the detection of low abundance targets, improving biocompatibility, and any other application where greatly improved S/N ratio is highly desired.

Selected References:
  1. Steinmetz, N. F., et al. (2010). Labeling live cells by copper-catalyzed alkyne–azide click chemistry. Bioconjug Chem., 21 (10), 1912-6. [PubMed]

  2. Rodionov, V. O., et al. (2007). Ligand-accelerated Cu-catalyzed azide-alkyne cycloaddition: a mechanistic report. J Am Chem Soc., 129 (42), 12705-12. [PubMed]
    Presolski, S. I., et al. (2010). Tailored ligand acceleration of the Cu-catalyzed azide-alkyne cycloaddition reaction: practical and mechanistic implications. J Am Chem Soc., 132 (41), 14570-6. [PubMed]

  3. Simmons, J. T., et al. (2011). Experimental investigation on the mechanism of chelation-assisted, copper(II) acetate-accelerated azide-alkyne cycloaddition. J Am Chem Soc., 133 (35), 13984-4001. [PubMed]

  4. Marlow, F. L., et al. (2014). Monitoring dynamic glycosylation in vivo using supersensitive click chemistry. Bioconjug Chem., 25 (4), 698-706. [PubMed]

  5. Clarke, S., et al. (2012). Fast, cell-compatible click chemistry with copper-chelating azides for biomolecular labeling. Angew Chem Int Ed Engl., 51 (24), 5852-6. [PubMed]

  6. Gaebler, A., et al. (2016). A highly sensitive protocol for microscopy of alkyne lipids and fluorescently tagged or immunostained proteins. J Lipid Res., 57 (10), 1934-1947. [PubMed]

  7. Gabillet, S., et al. (2014). Copper-chelating azides for efficient click conjugation reactions in complex media. Angew Chem Int Ed Engl., 53 (23), 5872-6. [PubMed]

訂購信息(靶點科技國內倉庫):


靶點科技(北京)有限公司

靶點科技(北京)有限公司

地址:中關村生命科學園北清創意園2-4樓2層

© 2025 版權所有:靶點科技(北京)有限公司  備案號:京ICP備18027329號-2  總訪問量:350573  站點地圖  技術支持:化工儀器網  管理登陸

主站蜘蛛池模板: 理论片午午伦夜理片影院99| 特黄熟妇丰满人妻无码| 成人免费午夜无码视频| 久久国内精品自在自线波多野结氏| 在线观看老湿视频福利| 中文字幕精品亚洲无线码二区| 内射无码专区久久亚洲| 激情图片激情小说| 无码永久成人免费视频| 日韩人妻中文无码一区二区| 亚洲高清国产拍精品26u| 成人日韩熟女高清视频一区 | 欧美老妇乱辈通奷| 性生交大全免费看| 国产福利一区二区三区在线视频| 日日摸夜夜爽无码毛片精选| aa片在线观看无码免费| 亚洲—本道 在线无码| 无遮挡h肉动漫在线观看| 日本伊人精品一区二区三区 | 少妇被躁爽到高潮无码文| 久久精品夜色噜噜亚洲a∨| 无码一区二区三区av免费 | 久久经精品久久精品免费观看| 国产精品熟女视频一区二区| 亚洲乱妇熟女爽到高潮的片| 99e热久久免费精品首页| 人人玩人人添人人澡欧美 | 中国精品无码免费专区午夜| 亚洲成a人v欧美综合天堂下载| 婷婷久久久亚洲欧洲日产国码av| 亚洲国产精品日韩av不卡在线| 免费看久久久性性| 日本免费一区二区三区高清视频| 丰满女邻居的嫩苞张开视频| 亚洲加勒比久久88色综合| 亚洲中文字幕av无码区| 国产亚洲色欲色一色www | 久久天天躁狠狠躁夜夜婷| 久久精品一卡二卡三卡四卡| 综合在线 亚洲 成人 欧美|